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Abstract. We study the effect of antiferromagnetic (AF) correlations in the three-band Emery model, with
respect to the experimental situation in weakly underdoped and optimally doped BSCCO. In the vicinity of
the vH singularity of the conduction band there appears a central peak in the middle of a pseudogap, which
is in an antiadiabatic regime, insensitive to the time scale of the mechanism responsible for the pseudogap.
We find a quantum low-temperature regime corresponding to experiment, in which the pseudogap is created
by zero-point motion of the magnons, as opposed to the usual semiclassical derivation, where it is due to
a divergence of the magnon occupation number. Detailed analysis of the spectral functions along the
(π, 0)–(π, π) line show significant agreement with experiment, both qualitative and, in the principal scales,
quantitative. The observed slight approaching-then-receding of both the wide and narrow peaks with
respect to the Fermi energy is also reproduced. We conclude that optimally doped BSCCO has a well-
developed pseudogap of the order of 1000 K. This is only masked by the narrow antiadiabatic peak, which
provides a small energy scale, unrelated to the AF scale, and primarily controlled by the position of the
chemical potential.

PACS. 74.72.-h Cuprate superconductors (high-Tc and insulating parent compounds) – 71.27.+a Strongly
correlated electron systems; heavy fermions – 71.10.Ay Fermi-liquid theory and other phenomenological
models

1 Introduction

The Fermi surface phenomena in the high-Tc cuprates, and
especially BSCCO, have been extensively investigated,
and a broad consensus has developed concerning their
main features. The Fermi surface is large and hole-like,
with a simple topology of a rounded square, or barrel, cen-
tered around the M-point [1]. Single-particle phenomenol-
ogy is routinely invoked on the ARPES spectra, thus the
‘self-energy’ and ‘damping’ are often extracted from the
main peak as if it were a coherent, weakly perturbed quasi-
particle [2]. However, in the underdoped regime and below
a temperature scale T ∗, the metallic state is surfeit with
low-energy correlations, about whose relevance for either
the pseudogap, or the superconducting mechanism itself,
there is no general agreement at present. Various experi-
mental observations at low energy have been interpreted
in terms of stripes [3], paramagnons [4], phonons [5], and
superconducting fluctuations above Tc [6]. All these corre-
lations are at present the object of intense scrutiny, mainly
with a view to ascertaining whether they enhance or sup-
press superconductivity.

Theoretical understanding of the measured electronic
spectral functions of high-Tc superconductors has received
significant attention in the context of these efforts [7–15].
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Physically, conduction occurs in the copper oxide planes,
so the most important electronic states are directly ac-
cessible to surface probes such as ARPES. This naturally
allows for a concentration of theoretical effort, especially
because the observed spectra offer some outstanding puz-
zles of their own. Such a long-standing issue is the appear-
ance of the pseudogap [16], observed near the vH points
for underdoped systems, and its connection with the AF
gap at lower doping on the one hand, and with the super-
conducting (SC) gap at lower temperature, on the other.
Experimentally, the pseudogap is clearly connected with a
(π, π) correlation [15], and the most natural candidate for
its origin are antiferromagnetic fluctuations above their
transition point [4].

The present work attempts to connect several aspects
of the low-energy phenomenology of the cuprates in the
hope of realistically constraining the eventual theory of the
optimally doped and weakly underdoped state. We adopt
an effective weak-coupling framework, and concentrate on
aspects least sensitive to model details. Our most impor-
tant observation is that the pseudogap does not really dis-
appear at optimal doping, but is instead rather inefficient
at suppressing part of the spectral strength around the vH
points. The unsuppressed strength appears at the Fermi
level as an ‘antiadiabatic’ central peak in the middle of a
still fairly wide and deep pseudogap. It is the latter ‘high-
energy pseudogap’ which indicates the underlying physical
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scale, while the ‘leading edge’ scale, associated with the
central peak, turns out to be incidental to the dynamics. It
is primarily controlled by doping. This interpretation does
not even depend on the pseudogap being due to antifer-
romagnetism as such, but only on the fact that the domi-
nant perturbing correlation occurs around the wavevector
Q = (π, π). It is however different than interpreting the
high-energy ‘hump’ in terms of bilayer splitting [11,17,18].

We do not enter here the important question why the
magnetic correlations undergo an essential change at Tc.
Our main aim is to show that when their observed low-
temperature behavior is introduced phenomenologically
in the calculation of the single-electron propagator, the
resulting antiadiabatic peak and pseudogap behave con-
sistently with the main features of the ‘peak-dip-hump’
structure, found in experiments on superconducting opti-
mally doped BSCCO. In this way our calculation refers to
the superconducting state. We only omit the direct effect
of superconductivity on the single electron propagation,
namely the appearance of a superconducting gap. This is
justified by the fact that the SC gap scale in ARPES is an
order of magnitude below the AF scale, manifested by the
high-energy ‘hump.’ In order to reproduce typical normal-
state ARPES profiles, which do not show a narrow low-
energy peak, we only need to overdamp the paramagnons.
Our work provides a connection between the observed si-
multaneous appearances of a magnetic resonance and of
a narrow low-energy peak in the ARPES profile, as the
temperature drops below Tc.

Like some other authors [19–21], here we use an ef-
fective weak-coupling (single-band) approach to describe
the effect of antiferromagnetic correlations on the single-
electron propagation. Given that Ud is large in the high-
Tc superconductors, our starting point is the strong cou-
pling limit, and we use the present calculation to develop
a phenomenological framework in which the correct physi-
cal regime can be identified for the effective weak-coupling
approach. Section 2 is thus devoted to placing the present
work in this wider theoretical context. Section 3 describes
the model results. A comparison with experiment is found
in Section 4. Finally, Section 5 is a recapitulation and dis-
cussion.

2 The electron self-energy and the central
peak

2.1 Separation of charge and spin channels

We enter a brief theoretical discussion now on the validity
of the weak-coupling single-band approach, with a large
hole-like Fermi surface, when Ud is large. This is the essen-
tial input in our calculation, important for its comparison
with the k-dependencies measured by ARPES.

Recently a considerable improvement in understanding
the band dispersion measured by ARPES in the high-Tc

superconductors near optimal doping has been achieved
by considering the extended Emery model [22] in the limit
of large interactions Ud on the Cu-site. The original Emery

model of the CuO2 plane is extended by taking into ac-
count the direct O-O hopping t′ < 0 in addition to the
original Cu-O hopping t0 and the difference ∆pd of the O
and Cu site energies [23].

In the limit of interest |t′| > t20/∆pd this means that
the ‘broad’ oxygen band is weakly hybridized with the
Cu level. The Emery model then resembles the Ander-
son lattice model which includes the accurate symmetry
of the electron (hole) propagation in the CuO2 lattice, ei-
ther along the O-O axis (t′) or along the Cu-O axis (t0).
Notably, the limit |t′| � t20/∆pd, although probably too
extreme for physical purposes, corresponds to the Falicov-
Kimball model [24], also sometimes invoked in the context
of high-Tc superconductors [25–29].

The large Ud limit of the Emery model [22] extended
by t′ was treated in the homogeneous mean field approx-
imation [23] applied to the slave-boson representation of
the Ud = ∞ Emery model. The usual objection that the
mean-field slave boson (MFSB) approximation breaks the
local gauge invariance required by the slave-boson theory
was met [30] by emphasizing that the static mean field
merely represents the slow component of the slave boson
field. This latter, allowed by local gauge invariance, only
appears as static when particular physical properties are
calculated, most notably the physical electron band dis-
persion. Thus the physical dispersion can be represented
by the usual non-interacting three-band dispersion, but
with strongly renormalized tight-binding parameters ∆pf

and t instead of ∆pd and t0, while t′ remains unaffected
by the copper on-site repulsion. Most importantly, in this
way the observed regime ∆pf ≈ 4|t′| > t naturally re-
places the regime ∆pd > t0 > t′, inferred from chemical
valence analysis and high-energy spectroscopy data. The
formula for the antibonding electron band is then

ε(k) =
1
3

√
P

(
cos

Ψ

3
+
√

3 sin
Ψ

3

)
, (1)

where

Ψ = arccos
Q

P 3/2
,

P = 12t2f1 + 48t′2f2 + ∆2
pf ,

Q = 144t′(3t2 + t′∆pf )f2 − ∆pf (18t2f1 + ∆2
pf ),

with f1 = sin2 kx/2 + sin2 ky/2 and f2 =
sin2 kx/2 sin2 ky/2. It is obvious from equation (1)
that the effective near neighbor hoppings t and t′ enter
the dispersion ε(k) non-linearly. This is in contrast to
those one-band approaches which include hoppings to
unphysically [31] distant neighbors, but as independent
parameters. (Noteworthily, LDA calculations [32] show
directly that when such long-range hoppings are induced
by reduction of multiband to single-band models, the
effective parameters depend non-linearly on the near-
neighbor ones, as in our case.) We use the single band (1)
from the three-band model with this distinction in mind.

Actually, after taking into account the fast harmonic
slave-boson fluctuations around the mean-field saddle
point, the MFSB band (1) decomposes into the narrow
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Fig. 1. Phenomenological one-magnon approximation.

resonant band with dispersion ε(k) and a spectral density
Ak, which accommodates approximately δ holes (doping
δ > 1) on the O-site and one hole localized in the local-
ized state on the Cu-site at the energy ∆pd, deep below
ε(k) [23,30]. The observed structure of the resonant band
in LSCO is well described [23] by the regime |t′| > t20/∆pd

and evolves with doping δ according to MFSB predictions.
Once these renormalizations are taken into account,

the remaining low-energy analysis concerns only the res-
onant band ε(k) containing the Fermi level. In the above
slave-boson calculations the spins of the localized holes
on the Cu sites are taken as paramagnetic. This is justi-
fied for large enough dopings δ, when the band-width of
the resonant band exceeds the magnetic and/or supercon-
ducting energy scales, whereas for δ ≈ 0 models of t-J
type may be more appropriate. Indeed, for optimal dop-
ings the bandwidth is of the order of 1 eV, whereas the
magnetic and/or superconducting effects occur on scales
lower by at least an order of magnitude. This approach
is in principle well suited to take magnetic energies into
account as a perturbation of the main energy scales as-
sociated with the resonant band. While the formation of
the resonant band is associated in the first place with the
slow component in the motion of the slave boson, its fast
component is alone responsible for the weak magnetic cou-
plings. Several calculations of this type were carried out
before for strongly interacting electron systems. In par-
ticular, for the t′ = 0 Emery model with large Ud, the
residual effective couplings were derived explicitly [33].
The extension of these ideas to finite t′, in particular to
|t′| > t20/∆pd, with a clear distinction between slow and
fast components of the slave-boson field is currently under
way. These residual couplings can be treated, for example,
by the perturbational 2D parquet theory. At t′ = 0 the
latter was shown [34] to lead to ladder-like results (‘fast
parquet’) in most of the space of coupling parameters, and
to the marginal Fermi liquid only under very special condi-
tions. Here we consider this ladder-like regime appropriate
for calculating the electron self-energy Σ from Figure 1,
where the wavy line represents the spin susceptibility χ,
and the triangular vertex corrections are neglected.

To summarize, for large Ud there is a natural separa-
tion of the slave-boson fluctuations into fast and slow com-
ponents. The latter appear static when calculating the ef-
fective dispersion of the electrons, so in fact our mean-field
slave-boson renormalization of the electronic band param-
eters corresponds to taking this slow component into ac-
count in the charge channel [30]. This explains why the
Fermi surface is large and hole-like. The fast component
in the spin channel is the paramagnon perturbation of the

large, hole-like Fermi surface. In the following, we concen-
trate entirely on the latter, neglecting triangular vertex
corrections in Figure 1.

2.2 Electron spectral density

Following the ideas expressed above, the fermion line in
Figure 1 is taken to represent hole propagation in the ab-
sence of magnetic couplings. In this approach the electron
Green’s function appearing in Figure 1 is free. It has been
observed [35,36] that corrections from self-consistency
tend to cancel with vertex corrections in the absence of
Migdal’s theorem, so it appears generally more reliable to
take neither into account than only one. Thus the retarded
Green’s function is just

G
(0)
R (k, ω) =

Ak

ω − ε(k) + µ + iη
, (2)

with ε(k) from equation (1), and Ak the spectral density
of the resonant band. Based on the above MFSB con-
siderations, we expect a significant k-dependence in this
quantity along the Fermi surface, once the strong on-site
repulsion is explicitly taken into account. In the present
work, we concentrate entirely on the vicinity of the vH
point, so Ak will eventually be absorbed into a coupling
constant.

The wavy line in Figure 1 is taken to correspond to
the simplest form of the magnetic propagator,

χR(Q + q, ω) =
ω2

0

(ω + iγ)2 − ωD(q)2
, (3)

where Q is close to the AF wave vector (π, π), γ is the
damping, and ωD the dispersion

ωD(q)2 = ω̃2 + c2|q|2. (4)

Here ω̃ is the band-edge, and c the paramagnon velocity.
An upper cutoff ω0 to the magnons is also introduced, cor-
responding to the extension ω0/c of the magnon anomaly
around Q.

The static magnetic structure factor related to equa-
tions (3) and (4) is characterized by the value of Q
and physical correlation length ξ = c/ω̃. This structural
factor is measured directly by the elastic neutron scat-
tering [37,38] or indirectly through the nuclear spin re-
laxation rate T−1

1 . Both these types of experiment were
recently shown [39] to be mutually consistent (in LSCO)
when related by the static limit of equation (4). For sim-
plicity however, the incommensurate effects (usually asso-
ciated with ‘stripes’) will not be included in the present
calculation, as they do not seem to be important for
ARPES results. The value of Q is therefore taken to be
(π, π) in equation (3), and ξ is isotropic.

Turning further to the dynamical features of equa-
tion (3), it should be noted that the possibility of a central
peak in the magnon response, below ω̃, appearing together
with the strong dispersive branches, is not included. We
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could include it, following an ansatz [40] slightly differ-
ent from equation (3). As shown below, such slow correla-
tions (usually associated with ‘dynamical stripes’) are not
needed to reproduce the main features of the electronic
spectral structure observed by ARPES along the (π, 0)–
(π, π) line. At fixed c and low temperature, the main pa-
rameter tuning the AF dynamics in equation (3) is the ra-
tio of the damping γ and the band-edge ω̃. Magnetic fluc-
tuations are strongly overdamped in the normal state, but
as soon as superconductivity sets in, a resonance peak ap-
pears at 41 meV, around optimal doping [37,38]. Notably,
Morr [41] has obtained the magnetic resonance peak, ob-
served below Tc, from a mode with the dispersion (4) and
ω̃ ≈ 20 meV, simply by changing from overdamping to
underdamping.

The formal expression for the (retarded) fermion self-
energy [42] may then be rewritten as a sum of two terms1

ΣR(k, ω) = − 1
2π2

∫
g2
k,qd2q

∫ ∞

−∞
dω′[χR(Q + q, ω−ω′)

× (1 − f(ω′))Im G
(0)
R (k − q − Q, ω′)

+ G
(0)
R (k − q − Q, ω − ω′)n(ω′)Im χR(Q + q, ω′)

]
, (5)

where gk,q is the effective interaction vertex in Figure 1,
and Q = (π, π). The first term in equation (5) is the bo-
son propagator convoluted with the electron response, the
second, vice versa. In the high temperature limit the first
is negligible, because the Bose occupation term dominates
the Fermi factor, n(ω′) ≈ kT/ω̃ � 1 − f(ω′). In the low-
temperature limit kT < ω̃, which we consider here, both
terms may be equally important, with contributions com-
ing from magnon zero-point motion. The antiadiabatic
central peak is due to the second (boson response) term
in both temperature limits, as is the lower side wing, cor-
responding to occupied states. The effect of the first term
in the low-temperature regime is twofold: it provides the
upper wing (unoccupied states) of the pseudogap, and sig-
nificantly affects the position and spectral intensity of the
peaks coming from the second term.

Each of the two terms can itself be expressed as the
sum of two contributions, a ‘dispersive’ part from the
propagator poles, and a ‘diffusive’ part from the poles
in the occupation factors. The diffusive terms are pro-
portional to the damping in the respective response func-
tions. They are not essential for the physics discussed in
the present work, although we include them in the nu-
merics, when we compare with experiment. The dispersive
parts are responsible for both the gap and the pseudogap,
when it appears. As shown below, the pseudogap ∆PG

can appear not only in the high-(kT > ω̃), but also in the
low-temperature (kT < ω̃) regime, while the true gap is
always in the high-temperature limit, since in the present
model it requires ω̃ → 0 before kT → 0. The temperature
is taken to be 10 meV, lower than the other parameters
in the problem.

1 If the lattice constant a ≡ 1, then the product g2
k,qAk is of

dimension energy.
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Fig. 2. Thick lines: antiadiabatic central peak in the renor-
malized electron spectral density Ã(ω) at the vH singularity
k = (π, 0) with µ = εvH , for a particularly simple parametriza-
tion. Thin lines: k = (π/2, π/2). The circles have the same
abscissas in all three panels.

As already emphasized in previous work [40,43], a spe-
cial physical regime applies in the vicinity of the vH point,
where the electrons themselves are slow, in fact static at
the vH point itself. Then a frequency ‘window’ appears, of
the order of the band-edge ω̃, in which a weakly damped
peak survives. This creates an ‘antiadiabatic’ central peak
in the middle of the pseudogap, as long as the param-
agnon band-edge is finite. For a thorough example of the
usual adiabatic regime from the side of broken transla-
tional symmetry, see reference [44], while reference [40]
describes the antiadiabatic regime without translational
symmetry breaking. Both of these study charge density
waves. In the high-Tc context, reference [43] discusses the
high-temperature antiadiabatic case, while reference [19]
is concerned with shadow-band signatures found in the
high-temperature overdamped regime (kT > γ � ω̃),
which we can also reproduce. The latter two references [19,
43] take the translational symmetry to be unbroken, like
the present work.

The appearance of the antiadiabatic central peak is
first illustrated in the renormalized spectral density Ã(ω)
of Figure 2 for a particularly simple parametrization. We
put t′ = 0 and µ = εvH , so that the unperturbed system
has a square nested Fermi surface touching the vH singu-
larity. The product g2

k,qAk is taken as constant, indepen-
dent of the position on the Fermi surface. The band-edge
ω̃ = 0.03 eV> kT = 0.01 eV≈ γ = 0.015 eV is set to the
low-temperature regime, as in the rest of the article, while
the remaining parameters are irrelevant for the discussion.
The thin line in the left panel gives the spectral strength
at k = (π/2, π/2), simply split into two peaks. They have
quasiparticle signatures, as shown in the right two pan-
els: Re Σ has a negative slope at the peak positions, and
|Im Σ| is small.

The thick lines show the situation at k = (π, 0), the
vH point, for the same parametrization. The maxima in
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the side wings, also denoted by full circles, are evidently
incoherent: the corresponding ReΣ has a positive slope,
and |Im Σ| is large. Clearly a central peak has survived at
the vH point, protected by the antiadiabatic mechanism.
To see this, note that when the boson response is peaked
around q ≈ 0 in equation (5), the main contribution to
Σ at k ≈ (π, 0), the vH point, comes from electrons at
k − Q ≈ (0,−π), the other vH point, where they are slow.

Thus the central peak consists of vH electrons which
do not scatter because they barely move, so for them even
the slowest available paramagnons are averaged out; this
is the antiadiabatic regime. It is clear that it violates the
Fermi liquid paradigm, since |Im Σ| �= 0 at the Fermi level
despite Re Σ = 0. This is because electrons interact with
dissipative bosons. When the boson damping γ is zero,
|Im Σ(ω)| ≡ 0 for |ω| < ω̃ at the vH point itself; this was
checked analytically [43]. It is further important to note
that the antiadiabatic peak does not necessarily appear at
the Fermi level, since it has its own k-dispersion. In the
zone, Re Σ and |Im Σ| for the antiadiabatic peak behave
similarly as for a quasiparticle, including the reduced but
finite quasiparticle weight. We shall see that the peak can
reveal its antiadiabatic origin nevertheless, by disappear-
ing with changing k when the electrons involved acquire
a significant velocity.

Our calculation can support various physically moti-
vated notions of a pseudogap simply by performing it in
different regions of parameter space. Because of this, the
actual pseudogap obtained in a particular calculation with
realistic parameters usually behaves as a transitional form
between intuitive limiting cases. For example, one might
say that a pseudogap exists only if the central peak does
not cross the Fermi energy. However, that behavior contin-
uously transforms into the usual quasiparticle one simply
by increasing the energy of the paramagnon band-edge,
and in fact the central peak can easily cross Ef before the
side wings have disappeared. Similarly, the notion that
Re Σ has to have a positive slope for a side wing to be
called incoherent is less restrictive than requiring |Im Σ|
to be maximal at the peak position. Thus the latter notion
of incoherence is found as a limiting case, while the former
appears across a wide range of parametrizations. Finally,
one could define the pseudogap by the spectral weight hav-
ing a minimum at the Fermi energy, and a maximum in
|Im Σ| at the same position. The split quasiparticle (thin
line) in the left panel of Figure 2 is a limiting case for such
a definition, where all the peaks appearing are coherent.
However, these peaks do not cross the Fermi energy. This
corresponds to the most common understanding of a pseu-
dogap, where a coherent quasiparticle splits in two because
of strong scattering at ω = µ, which is the precursor to
the new zone boundary when ω̃ → 0 at fixed temperature.

Let us narrow the usage of the term ‘pseudogap’ now,
to the one found relevant for the present work. We do not
call the thin line in the left panel of Figure 2 a pseudogap,
in spite of the valley between the two peaks, correspond-
ing to a large |Im Σ|. However, the peaks themselves are
‘coherent,’ as discussed above. Here we reserve the term
‘pseudogap’ for manifestly incoherent side wings, like the
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Dashed line: kT = 0.1 eV, F = 0.026 eV. Vertical dotted
lines, left to right: paramagnon scale (ω̃ = 40 meV), and Fermi
energy.

side wings of the thick line, irrespective of the nature or
presence of a central peak in the middle. Notably, other
parametrizations can give three coherent peaks at the vH
point, the two side ones like at the nodal point, and an
antiadiabatic one in the middle; in that case there is no
pseudogap at all, in the language of this article.

3 Model regimes

At fixed low temperature, the ratio of the paramagnon
‘band-edge’ ω̃ to the damping γ becomes the principal
physical parameter of the self-energy (5). We shall show
below that this number is relevant to account for the prin-
cipal features of the ARPES measurements in BSCCO
and YBCO [45] along the (π, 0)–(π, π) line, which we shall
call X–M, in accord with the crystallographic notation for
YBCO. We take ω̃ to be 40 meV, in accord with experi-
ment, which puts our calculation in the low-temperature
limit, kT < ω̃. This means that the electrons are only per-
turbed by paramagnon zero-point motion. We argue below
it is this ‘quantum’ pseudogap which is actually observed
in optimally doped BSCCO. The use of the term pseudo-
gap to refer to the destruction of the Fermi liquid behavior
by magnetic quantum fluctuations is already well estab-
lished in studies of the antiferromagnetic quantum critical
point [46].

The parameters in expression (5) are treated semiphe-
nomenologically, i.e. we shall use them primarily to adjust
the experimentally observed outcomes, but with regard
to physically reasonable values. Let us give a standard
parametrization now, used throughout the article. The
renormalized parameters of the Ud = ∞ Emery model in
the hole picture are: copper-oxygen hopping t = 0.3 eV,
oxygen-oxygen hopping t′ = −1 eV, and effective copper-
oxygen energy splitting ∆pf = 3.6 eV. The Fermi energy
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is in the electron antibonding band (1) of the three-band
model [23]. The temperature is kT = 0.01 eV, as already
mentioned.

The paramagnon parameters are the band-edge ω̃ =
0.04 eV, damping γ = 0.015 eV, cutoff ω0 = 0.15 eV,
and correlation length ξ = c/ω̃ ∼3 lattice spacings. The
coupling constant is g2

k,qAk ≡ F = 0.077 eV. Its wave-
vector dependence is neglected, because we concentrate on
k ≈ (π, 0) and q ≈ 0. To get a feeling for it, we note that
the total range of Σ around the Fermi surface is ∼0.1 eV
for this parametrization, which is roughly an order below
the width of the non-interacting antibonding band (1).
Hence 100×F/1 eV may conveniently be imagined as ‘per-
cent’ of the non-interacting electronic scale. The chemical
potential is µ = 0.025 eV from the vH point. (Larger µ
means less holes.) Individual parameter values are quoted
elsewhere in the paper only to denote deviations from the
set given here.

The generic form of the pseudogapped spectral func-
tion with a central peak is shown in Figure 3. As long as
we are in the vicinity of the vH point, some of the spectral
strength of the slow electrons survives in the middle of the
pseudogap, itself of width 2∆PG, near the Fermi energy.
The persistence of a central peak in the single-loop ap-
proximation was noted earlier [40,43]. There appears an
intrinsic ‘leading edge’ scale, the small distance from the
central peak to the Fermi energy. When the chemical po-
tential is shifted toward underdoping, this distance in-
creases. The high background observed in ARPES does
not appear here. It was obtained in both ARPES [47]
and Raman [48] contexts by taking into account the high-
frequency slave-boson fluctuations in the charge channel,
which we do not consider here. (In the latter case [48]

this was done in the so-called non-crossing approxima-
tion, a somewhat different starting point from the mean-
field slave-boson one, on which this article is based.) The
upper and lower wings at ∆PG > ω̃ may be understood
in the semiclassical language as a consequence of the elec-
tronic scattering on the nearly static, but still not com-
pletely ordered AF-like potential induced by the param-
agnons. This interpretation implies essentially incoherent
side wings, with a large Im Σ and ReΣ with a positive
slope. (In fact a different structure can also appear, with
coherent side peaks, as mentioned in the discussion of Fig-
ure 2.) In the parametrizations used here to compare with
experiment, the side wings are in fact incoherent, while
the physical regime is at low temperature.

The pseudogap in the high-temperature limit looks
quite similar, as shown by the broken line in Figure 3.
In particular the energy scale of the side wings is easily
adjusted to be the same. The qualitative behavior is how-
ever different, and since the distinction is important for
the phenomenology, we discuss it now.

In Figure 4, we show the calculated low-temperature
(left panel) and high-temperature (middle and right pan-
els) peaks dispersing along the X–M line. We first take
the band-edge rather high, ω̃ = 0.06 eV, to emphasize
the antiadiabatic peak, which picks up most of the spec-
tral strength. Then the only difference between the left
and middle panels is the temperature, and we note that
the antiadiabatic peak is much less dispersive in the low-
temperature case, and loses strength before crossing the
Fermi level. The low-temperature regime is influenced by
both terms in equation (5) equally, with a competition
between the Bose and Fermi contributions. In the high-
temperature limit the second (boson response) term takes
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Fig. 5. Thin lines: zeroth-order Ud = ∞ Fermi surfaces. Points connected with thick lines: Fermi surfaces from maxima in
momentum distribution curves at ω = µ. Dashed lines: zone diagonals. Left: high-temperature pseudogap, kT = 0.1 eV and
F = 0.026 eV. Right: low-temperature pseudogap. In this figure, µ = 0.015 eV throughout. Points: experimental Fermi crossings,
large: reference [49], small: reference [50]. (The value of F in the high-temperature case is adjusted to give a practically identical
EDC profile at the vH point as in the low-temperature case, in particular the same pseudogap scale.)

over, with a different dynamics, due to the fact that when
kT � ω̃ > γ, n(ω̃) in equation (5) becomes ≈ kT/ω̃, in-
troducing an additional dispersive factor in the denomina-
tor. Note, however, that the intensities are given without
the Fermi occupation factor — we show the renormalized
spectral density Ã(ω), not f(ω − µ)Ã(ω). This means in
particular that the loss of intensity in the left panel is
not due to the Fermi surface crossing, in fact we shall see
(Fig. 8 in the experimental section) that it occurs just
as well when the antiadiabatic peak stays away from the
Fermi surface.

It is possible to keep the antiadiabatic peak below the
Fermi energy in the high-temperature regime as well, by
lowering the band-edge ω̃. This is shown in the right panel.
Notice that lowering the band-edge in the high tempera-
ture regime goes toward the opening of a true gap, so
the antiadiabatic signal is much smaller, relative to the
side wings. Otherwise, the dispersion is qualitatively sim-
ilar to the left panel, especially so when we realize that
lowering the band-edge flattens the dispersion in the low-
temperature kT < ω̃ case as well (as visible in Fig. 8),
similarly pushing the signal away from the Fermi energy.
The important qualitative difference in the behavior of
spectral strengths is however the following: in the left
panel of Figure 4, we notice that the side signal disap-
pears before the antiadiabatic one; in the right panel, they
disappear together. In fact, the generic behavior in the
high-temperature kT > ω̃ limit is rather that the antia-
diabatic peak disappears sooner. We shall see in the next
section that experimental evidence in the superconduct-
ing state exhibits the low-temperature behavior, providing
one piece of evidence that the measured response is in the
low-temperature quantum regime.

The second piece of evidence is the effect of the magnon
perturbation on the Fermi surface. In the absence of a
quasiparticle crossing, the experimental community has
developed various alternative criteria to define the Fermi

surface, one of which is the position of the maximum in
the momentum-distribution curve at fixed ω = µ [12]. We
adopt that criterion in Figure 5, which shows that the ef-
fect of magnon perturbation on the zeroth-order Fermi
surface is qualitatively different for the high- and low-
temperature pseudogaps. In the high-temperature (semi-
classical) regime kT > ω̃ (left panel), the tendency is to
change the shape of the Fermi surface so as to follow
the zone diagonal in the vicinity of the ‘hot spots’ [46],
i.e. the points of intersection of the Fermi surface with
the diagonal. Geometrically, this means that the angle of
the Fermi surface with the zone diagonal decreases. In the
low-temperature (quantum) regime kT < ω̃, shown in the
right panel, the result is precisely the opposite, the in-
tersection angle increases, and there is even a tendency
to turn the effective Fermi surface upwards, resulting in
a ‘flared’ shape. While our parametrization was chosen
for a best fit to energy distribution curves (see below),
and we do not expect detailed agreement with the Fermi
surface shape, this qualitative difference is of foremost
physical importance. It shows, in effect, that ‘hot spot’
scenarios, for example reference [51], correspond to the
high-temperature regime of equation (5). They depend on
the similarity between ‘strong’ and ‘singular’ scattering at
the nesting wave vector, but this similarity is qualitatively
correct only when kT > ω̃, which is not the observed case.
The tendency of the Fermi surface to follow the zone di-
agonal for kT > ω̃ is of course a precursor to the diagonal
becoming the new zone boundary, when the paramagnons
condense. As already stressed above, this can only happen
in the present model when ω̃/kT → 0. While the upturn
of the Fermi surface has never been clearly observed —
there is only one experiment [50], the small points Fig-
ure 5, which seems to show such a tendency — the bend-
ing to follow the zone diagonal can be excluded with cer-
tainty. The Fermi surface of optimally doped BSCCO in
the vicinity of the vH points is at least a straight line
parallel to the Γ–X line. The marked difference between



276 The European Physical Journal B

the two final shapes (thick lines) in Figure 5 means that in
the present model one must choose the right-hand panel to
reproduce the experimentally observed shape. Thus, both
the evolution of ARPES spectra in the Brillouin zone and
correction to the zeroth order U = ∞ shape of the Fermi
surface in BSCCO seem to point in the same direction,
that the observed pseudogap is due to zero-point motion
of the magnons.

This discussion can be followed in the form of equa-
tion (5). In the semiclassical regime kT > ω̃, the first term
is negligible with respect to the divergence of the boson oc-
cupation number in the second term, which is a precursor
to the true gap. In the low-temperature regime, the two
terms are of the same order. They contribute even at zero
temperature, because the paramagnon zero-point motion
can excite electrons within ω̃/2 ≈ 20 meV of the Fermi
energy, and since the vH singularity is roughly within this
range, that means a lot of them. Thus we can violate the
conventional Fermi liquid picture simply by putting in dis-
sipative paramagnons and letting kT/ω̃ → 0, keeping ω̃ at
its observed value, as discussed on the simple example of
Figure 2. It would of course be interesting to understand
why the paramagnon resonance should appear when the
system goes superconducting. We hope to shed more light
on this question when we consider the on-site repulsion
explicitly, as mentioned in Section 2.

4 Comparison with experimental spectra

In Figure 6, we show the comparison with experiment,
used to establish the parametrization. The jagged lines
are measured ARPES intensities [10] of optimally doped
BSCCO, integrated along the (0, 0)–(π, 0) line, in the nor-
mal (T = 103 K, left) and superconducting state (T =
46 K, right). The smooth lines are both calculated at the
(π, 0) point with the parameters in the text, the only dif-
ference being the paramagnon damping: left, overdamped
(γ = 0.06 eV), right, underdamped (γ = 0.015 eV). The
difference, marked by crosses, in the positions of the lead-
ing peaks in the right panel is ∼100 K, the superconduct-
ing scale. The vertical scales of the two experimental and
the two theoretical curves are the same, while the rela-
tive scale of theory vs. experiment is arbitrary. The single
(overdamped) peak in the left panel and the side peak
in the right panel correspond to a positive slope of ReΣ
and large ImΣ, i.e. are both incoherent. Only the narrow
(leading-edge) peak in the right panel is coherent, with
negative slope of Re Σ and small Im Σ.

Having fixed all parameters at the (π, 0) point in Fig-
ure 6, we now compare model predictions of evolution in
the BZ with a different set of experimental data [12], first
in Figure 7. The strong non-dispersive structure observed
at the Fermi level corresponds to the antiadiabatic peak in
the calculation. The lower wing of the pseudogap is shifted
away from the position of the original three-band disper-
sion, reproducing the experimental high-energy ‘hump’
scale of ∼100 meV. The ridge at ∼100 meV binding
roughly follows the original dispersion, broken and shifted
by the paramagnon interaction. The antiadiabatic peak is
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Fig. 6. Comparison with experiment on BSCCO (jagged
line [10]), left: T = 103 K, right: T = 46 K. Calculation
(smooth curves), left: overdamped magnons (γ = 0.06 eV),
right: underdamped magnons (parameters in the text). The
scale kTc ∼ 100 K is approximately given by the double thin
cross, which marks the difference in position between the mea-
sured and fitted narrow peaks.

interpolated between it and the upper wing (not visible
because of the Fermi factor). Notably, the same behavior
has been reported along the X–M line in YBCO [45].

In Figure 8, we show the detailed energy distribution
curves (EDC’s) corresponding to Figure 7. All the qualita-
tive experimental features are correctly reproduced: both
the major and minor energy scales, and the downturn (in
energy) of the antiadiabatic peak as one moves further
away from the Fermi crossing. Such an approaching-then-
receding of the narrow peak with respect to the Fermi
level has been noticed in experiment [12], and becomes
more pronounced with underdoping.

The reference position of the central peak at (π, 0) is
at the Fermi energy, as observed in our simple example
in Figure 2. As soon as the chemical potential is shifted,
or one looks at other points in the BZ, the peak moves
away from the Fermi energy, producing a ‘leading-edge’
energy scale of the order of the chemical potential, affected
of course by its own dispersion. It is unrelated either to
the primary AF scale, which determines the width of the
pseudogap by the ‘high-energy’ side lobes, or the super-
conducting scale, which does not appear in the calculation
at all. Of course, as the coupling constant decreases, or
band-edge ω̃ increases, the peak begins to turn back into
an ordinary (weak-coupling) quasiparticle.

In the right two panels of Figure 8, we show what
happens as one moves towards the Γ point in cuts par-
allel to the X–M line. We note a significant redistribu-
tion of spectral strength, such that the side peak is much
stronger at ky = 0, the Γ–X line itself, but quickly loses
strength as one moves perpendicularly away from it in
the ky direction, parallel to the X–M line. Finally at
ky = 0.35π/a, only the antiadiabatic peak survives. Ex-
perimentally, much the same behavior has been observed,
with the proviso that it seems to evolve more slowly in the



D.K. Sunko and S. Barǐsić: Central peak in the pseudogap of high T c superconductors 277

0.0 0.1 0.2 0.3 0.4
0.3

0.2

0.1

0.0

−

−

−

Fig. 7. Experimental log-intensity distribution in optimally doped BSCCO [12] (left), compared with the present calculation
(right). The vertical scale is in eV from the Fermi energy, the horizontal one in π/a along the X–M line. White lines: horizontal,
Fermi energy; curved, unperturbed Ud = ∞ dispersion. The intensities are multiplied by a Fermi factor at 100 K.
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Fig. 8. Left to right: a) experimental EDC’s along the X–M line, from ky = 0 (top) to ky = 0.365π (bottom), multiplied by
a Fermi function at 100 K and offset for clarity [12]. b) Calculated intensities for the same situation. c) the same for the line
parallel to X–M at kx = 0.9π. d) experiment for the line parallel to X–M at kx = 0.64π. EDC’s corresponding to the Fermi
surface crossing from the maximum in the momentum distribution curve are given by a thicker line. The measurement and
parameters are the same as in Figure 7.

Γ direction, so the qualitative features we calculate around
kx = 0.9π here are observed around kx = 0.64π in experi-
ment [12]. Again, the wide peak has its own approaching-
then-receding sequence, similar to the one observed both
in optimally doped [12] and underdoped samples [52]. The
fact that the calculated qualitative features continue to
match closely the experimental situation as one moves
away from the X–M line into the zone interior, while the
quantitative evolution proceeds at a different pace, is pos-
sibly due to neglecting the k-dependence of the product
g2
k,qAk in the calculation.

The principal outcome of the comparison with exper-
iment is that the experimental situation [12] in the su-
perconducting state corresponds to the model regime of
low temperature and low damping kT ≈ γ < ω̃. This al-
lows us to claim that the pseudogapped regime in fact
extends to optimal doping. Furthermore, the fact that our
underdamped curves are calculated in the normal state
means that the main qualitative effect of superconductiv-
ity on the ARPES signal is due to the reduction of magnon
damping in the superconducting state.

5 Summary

The present work associates the observed spectra around
the vH point with the concept of an antiadiabatic central
peak. It appears in the middle of a pseudogap, represent-
ing that part of the spectral strength which is not sup-
pressed by the usual adiabatic mechanism of the opening
of a pseudogap. The underlying main AF scale ∆PG is
allways that of the side wings in Figure 3, which is ob-
served in ARPES as a ‘high-energy’ feature, or ‘hump.’ In
this way we are able to claim that the leading-edge scale,
connected with the narrow peak, is not due to any inde-
pendent physical phenomenon. The position of the antia-
diabatic peak is sensitive to the chemical potential, which
naturally accounts in our scheme for the increase of the
‘leading edge’ pseudogap with underdoping. We can eas-
ily recover the conventional Fermi liquid by raising the
paramagnon band-edge or lowering the coupling constant.
At some point the ‘hump’ scale goes to zero, and one re-
covers the usual weakly perturbed quasiparticle. This is
consistent with the observation that the ∆PG ∼ T ∗ scale
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disappears at overdoping, rather than merging with the
superconducting scale [53,54].

The pseudogap with an antiadiabatic peak was found
in this work to have two physical regimes, low- and high-
temperature, relative to the paramagnon band-edge. The
regime of low temperature corresponds to experiment in
optimally doped BSCCO. In the model, it gives rise to
a dispersion for the antiadiabatic peak which is quali-
tatively different from the bare Ud = ∞ one, amount-
ing to a non-dispersive ‘feature’ at a few tens of meV
binding energy. Thus the observed leading-edge scale need
not be entirely due to the superconducting gap. The low-
temperature regime kT < ω̃ is pseudogapped, because a
true gap appears when ω̃ → 0 before kT → 0, i.e. it is al-
ways in the high-temperature regime. As long as ω̃ is held
fixed, a pseudogap-like situation will occur for kT < ω̃,
without developing into a true gap even for the lowest
temperatures. However, it may be a true pseudogap, in the
sense that the side wings are incoherent, and this is the
case in the parametrization used here to compare with ex-
periment. Lowering the band-edge in the low-temperature
regime makes the central peak disappear just like in the
high-temperature case, thus naturally accounting for the
underdoped situation.

We took much trouble with Figures 4 and 5 to choose
the low-temperature regime, although the magnon mode
at 41 meV is obviously much higher than the tempera-
ture. The reason is that our calculation is so simple and
generic that it fairly represents the perturbation by any
bosonic mode which does not have a slow component.
There are a number of observed low-energy fluctuations,
such as stripes, which we do not take into account here. At
present, we cannot completely exclude a possible role of
slow (spin) fluctuations in the electron response measured
by ARPES. These can be modelled to some extent by a
‘central peak’ in the boson response, distinct from the dis-
persive branches studied here, and introduced in our cal-
culation by a slightly more general parametrization [40] of
Im χ. However, since the observed spectral strength redis-
tribution and Fermi surface shape both correspond to our
low-temperature regime, we can ascribe the main features
of the ARPES response to the dispersive paramagnons. In
this way the other low-energy phenomena are relegated to
a secodary role, possibly having to do with the shape and
spectral composition of the side wings. Even if the pseu-
dogap were not due to paramagnons, still the conclusion
would remain that the characteristic energy scale of the
relevant boson is higher than the temperature, hence the
pseudogap need not of itself imply any additional ground-
state phenomena. As things stand, we see no reason to
depart essentially from the natural interpretation in terms
of AF paramagnons.

The neglected quantum fluctuations in the charge
channel are also expected to affect the width and shape of
the high-energy hump observed in ARPES, which appears
sharper and narrower in our calculation than in experi-
ment. Apart from that, the EDC’s obtained along the X–
M line have a striking resemblance to experiment in their
main features. Both the high-energy scale of ∼100 meV,

and the leading-edge scale of 20–30 meV are correctly re-
produced. The main intensity pattern, where the peak
loses strength further away from the vH point, without
ever crossing the Fermi energy, is reproduced as well. The
intensity shifts between the central peak and side wings
are also obtained. Finally, the observed slight variation
in the narrow peak position, which approaches the Fermi
energy and then recedes from it, is also found in the cal-
culation. Thus we believe that we have understood the
physical origin of the narrow lowest-energy signal along
the X–M line to be quite general: the electrons giving rise
to this signal are slower than the perturbing paramagnons,
and so escape the adiabatic suppression which opens the
pseudogap. We can easily recover the actual experimental
situation for T � Tc, simply by overdamping the param-
agnons, which washes out the antiadiabatic peak. This sce-
nario is naturally consistent with the fact that a precursor
of the narrow peak is sometimes observed above Tc. Based
on the above discussion, we claim that the pseudogap in
optimally doped BSCCO is in fact fully developed, of the
order of 1000 K, and is only masked by the antiadiabatic
peak. In this way we can view the superconducting correla-
tions as a third scale, an order of magnitude lower than the
pseudogap ‘hump’ scale, and two orders of magnitude be-
low the on-site repulsion, here taken into account through
the overall band renormalization. Their interplay with the
antiadiabatic leading-edge scale found here, which is of the
same order of ∼10 meV, should be of interest. It remains
to be seen whether the physical regime found here to be
relevant for the low-energy cuprate phenomenology can be
consistently obtained from a microscopic strong-coupling
approach in the presence of an oxygen-oxygen overlap, as
outlined in Section 2.

To conclude, we described the main low-energy signal
along the X–M line in optimally doped BSCCO to be due
to an antiadiabatic central peak. The pseudogap in the
same material is an order of magnitude above the super-
conducting scale, and persists below Tc. The small sepa-
ration between the antiadiabatic peak and the Fermi level
appears naturally in the calculation, even in the absence
of explicit superconductivity. It is primarily determined
by the value of the chemical potential, in a way consistent
with its observed variation with doping.

Conversations with J. Friedel and E. Tutǐs are gratefully ac-
knowledged. This work was supported by the Croatian Gov-
ernment under Project 0119256.
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